Article – Influence of Alloying Elements Sn and Ti on the Microstructure and Mechanical Properties of Gray Cast Iron – Prochainement dans le TNF 31

Logo_Influence-of-Alloying-Elements-Sn-and-Ti

Influence of Alloying Elements Sn and Ti on the Microstructure and Mechanical Properties of Gray Cast Iron

 

 

Abdul Razaqa, Yajun Yina, Jianxin Zhoua*, Xu Shena, Xiaoyuan Jia, Ismat Ullahb

a State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430047, China

bState Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China

 

 

Résumé

Les recherches sont finalisées après avoir examiné et observé l’influence des propriétés mécaniques de la fonte grise par l’ajout d’éléments d’alliage favorisant la perlite tels que l’étain (Sn) et le titane (Ti). Les résultats indiquent que la microstructure, la dureté Brinell et la résistance à la traction ultime de la fonte grise ont été significativement modifiées. L’évolution du graphite et de la matrice a été mise en évidence par microscopie électronique à balayage. Il a été observé que le Sn dans la gamme expérimentale réduit la taille du graphite, tandis que la quantité de perlite augmente d’environ 95% avec l’augmentation du Sn et du Ti. Les échantillons préparés ont montré des microstructures de type A, B, D, E et F. L’ajout d’une concentration significative de Sn (0,492% en poids) et de Ti (0,591% en poids) stimule la résistance à la traction ultime et la résistance à l’impact, montrant les valeurs les plus élevées de 314 MPa et 234, respectivement. La limite d’élasticité a plongé avec l’ajout de la teneur en Sn et Ti en raison de la présence de plus de perlite. Les échantillons contenant trop de Sn et de Ti subissent une forte détérioration des propriétés mécaniques en raison de la fragilité de la cémentite.

 

Abstract

The investigations are finalized after reviewing and observing the influence of mechanical properties of the gray cast iron via adding pearlite promoting alloying elements such as Tin (Sn), Titanium (Ti). The results indicated, the microstructure, Brinell hardness and Ultimate tensile strength of the gray cast iron were significantly changed. Graphite and matrix evolution was emphasized by scanning electron microscopy. It was observed, the Sn in experimental range reduces graphite size, whereas, the pearlite quantity increased about 95% with the increasing of Sn and Ti. The prepared samples showed A, B, D, E and F type-microstructures. Adding significant concentration of Sn (0.492 wt%) and Ti (0.591 wt%) stimulate the Ultimate tensile strength and impact toughness, showing the highest values of 314 MPa and 234, respectively. Yield strength was plunged with the addition of Sn and Ti content because of the presence of more pearlite. Samples containing excessive Sn and Ti experience sharp deterioration in mechanical properties due to brittle cementite.

 

La suite de cet article prochainement dans le TNF 31

 

 

 

References

[1] Ruxanda, R., D. Stefanescu, and T. Piwonka, Microstructure characterization of ductile thin-wall iron castings. Transactions-American Foundrymens Society, 2002. 2: p. 1131-1148.

[2] Brauer, S., et al., Strain Rate and Stress-State Dependence of Gray Cast Iron. Journal of Engineering Materials and Technology, 2017. 139(2): p. 021013.

[3] Behnam, M.J., et al., Effect of cooling rate on microstructure and mechanical properties of gray cast iron. 2010. 528(2): p. 583-588.

[4] Dhindaw, B. and J. Verhoeven, Nodular graphite formation in vacuum melted high purity Fe-C-Si alloys. Metallurgical Transactions A, 1980.11(6): p. 1049-1057.

[5] Park, J. and J. Verhoeven, Transitions between type A flake, type D flake, and coral graphite eutectic structures in cast irons. Metallurgical and Materials Transactions A, 1996. 27(9): p. 2740-2753.

[6] Antoni-Zdziobek, A., et al., About one stable and three metastable eutectic microconstituents in the Fe–W–C system. 2008. 26(4): p. 372-382.

[7] Tao, Y., J.T. Liu, and Y.W. Zhang. Evaluation of Mechanical Properties of a Superalloy Disk with a Dual Microstructure. in Advanced Materials Research. 2011. Trans Tech Publ.

[8] Murray, J.L.J.A.i., Phase diagrams of binary titanium alloys. 1987: p. 340-345.

[9] Chen, T., et al., Effect of CeO2 on microstructure and wear resistance of TiC bioinert coatings on Ti6Al4V alloy by laser cladding. 2018.11(1): p. 58.

[10] Ibrahim, K.M. and M.M.J.J.o.M. Ibrahim, Heat treatment in high chromium white cast iron Ti alloy. 2014. 2014.

[11] Bedolla-Jacuinde, A., et al., The effect of titanium on the wear behaviour of a 16% Cr white cast iron under pure sliding. 2007. 263(1-6): p. 808-820.

[12] Bockus, S.J.M., A study of the microstructure and mechanical properties of continuously cast iron products. 2006. 45(4): p. 287-290.

[13] Thwaites, C.J.J.P.N., TIN RESEARCH INST, GREENFORD, MIDDLESEX, ENGLAND. , 7 P, The Suppression of Ferrite in Undercooled Flake Iron by Additions of Tin. 1968.

[14] Studnicki, A.J.A.o.F.E., Effect of boron carbide on primary crystallization of chromium cast iron. 2008. 8(1): p. 173-176.

[15] Aguirre, M., et al., Mechanical properties of Y2O3-doped W–Ti alloys. 2010. 404(3): p. 203-209.

[16] Lukac, F.,et al., Properties Mechanically Alloyed W-Ti Materials with Dual Phase Particle Dispersion. 2016. 7(1): p. 3.

[17] Rudy, E.J.J.o.t.L.C.M., Constitution of ternary titanium-tungsten-carbon alloys. 1973. 33(2): p. 245-273.

[18] Lyu, Y., et al., Effect of tin on microstructure and mechanical properties of compacted graphite iron. 2015. 28(5): p. 263-268.

[19] Goodrich, G.M.J.A.T., Cast iron microstructure anomalies and their causes. 1997. 105: p. 669-683.

[20] Long, J. and D. Robbins, Control of Structure and Properties of Cast Iron by the Addition of Tin. 1963: Tin Research Institute.

[21] Spencer, W. and M.J.T.o.t.A.F.s.A. Walding, Effects of Eleven Metals or Alloys on the Physical Properties of Gray Cast Iron. 1932. 40: p. 491-509.

[22] Kumar, P., A. Bhargava, and Y.J.M.S.R.I. Prasad, Effect of Tin Additions on Microstructure and Mechanical Properties of Sand Casting of AZ92 Magnesium Base Alloy. 2014. 10(2): p. 133-138.

[23] Hoare, W. and E. Hedges, Tin and Its Uses. Edward Arnold and Co, 1959.