Article – Lanthanides: a focused review of eutectic modification in hypoeutectic Al–Si alloys – Part 1

Logo_Lanthanides_01

Lanthanides: a focused review of eutectic modification in hypoeutectic Al–Si alloys – Part 1

Abstract : A modified fibrous-like eutectic structure strongly improves the final mechanical properties of Al–Si foundry alloys, especially ductility. Beside widely used commercial eutectic modifiers such as Sr and Na, lanthanides appear to be a possible alternative in the eutectic Si modification process for hypoeutectic Al–Si casting alloys. All lanthanides have similar physical and chemical properties, such as density, melting point, and fading phenomena, which have been compared in the present review. They also show atomic radii close to the optimal atomic radius for a modifying agent. However, the microstructural evolution of eutectic Si is strictly related to the specific element and content of lanthanides, whose abundance, reserve, mining, production and market situations have been preliminary evaluated in this paper. The eutectic modification mechanisms induced by lanthanides are not well-discussed and clarified yet. The advantages and disadvantages of individual addition of lanthanides for chemical modification of hypoeutectic Al–Si alloys have been here critically reviewed. The use of lanthanides for eutectic Si modification in Al–Si alloys has been discussed from both effectiveness and economical point of views. Nowadays, the actual cost and their efficiency seem to make lanthanides still far to be used in foundry industry for commercial and large-scale applications.

 

Puce_Download-Document

Accéder à l’article sur TECH News FONDERIE

 

 

ART_TNF22_Lanthanides_01

ART_TNF22_Lanthanides_02

ART_TNF22_Lanthanides_03

 

References

 

[1] Klinger JM. A historical geography of rare earth elements : from discovery to the atomic age. Extract Ind Soc 2015;2(3) : 572–80,

http://dx.doi.org/10.1016/j.exis.2015.05.006.

[2] Zhou B, Li Z, Chen C. Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 2017;7(11) : 203, http://dx.doi.org/10.3390/min7110203.

[3] Goonan TG. Rare earth elements – end use and recyclability. In : U.S. geological survey scientific investigations. Report 2011-5094; 2011, 15 p., Available from : http://pubs.usgs.gov/sir/2011/5094/.

[4] Seddon M. Rare earth market overview. London, England : Argus Media Ltd; 2019. Available from : http://www.argusjapan.com/cgi-bin/MetalsForum2018/RareEarths ArgusMetalForum.pdf [accessed 10.05.20].

[5] Moniri S, Shahani AJ. Chemical modification of degenerate eutectics : a review of recent advances and current issues. J Mater Res 2019;34(1) : 20–34, http://dx.doi.org/10.1557/jmr.2018.361.

[6] Henderson P, editor. Rare earth element geochemistry. Elsevier; 2013. ISBN : 0-444-42148-3.

[7] Lucas J, Lucas P, Le Mercier T, Rollat A, Davenport WG. Rare earths : science, technology, production and use. Elsevier; 2014. ISBN : 978-0-444-62735-3.

[8] Haynes WM. CRC handbook of chemistry and physics. CRC press; 2014. ISBN : 978-1-4822-0868-9.

[9] Hurst C. China’s rare earth elements industry : what can the west learn? Washington DC : Institute for the Analysis of Global Security; 2010. Available from : https://apps.dtic.mil/docs/citations/ADA525378 [accessed 19.03.20].

[10] Bernhardt D, Reilly J. Mineral commodity summaries 2020. Reston, USA : US Geological Survey; 2020. Available from : https://www.usgs.gov/centers/nmic/mineral-commoditysummaries [accessed 01.05.20].

[11] De Lima IB, Leal Filho W, editors. Rare earths industry : technological, economic, and environmental implications. Elsevier; 2015. ISBN : 978-0-12-802328-0.

[12] Salazar K, McNutt MK. Metal prices in the United States through 2010. Reston, Virginia : US Geological Survey; 2013. Available from : https://pubs.usgs.gov/sir/2012/5188/ [accessed 19.03.20].

[13] Fernandez V. Rare-earth elements market : a historical and financial perspective. Resour Policy 2017;53 : 26–45, http://dx.doi.org/10.1016/j.resourpol.2017.05.010.

[14] Mae Y. Schematic interpretation of anomalies in the physical properties of Eu and Yb among the lanthanides. Int J Mater Sci Appl 2017;64 : 165–70, http://dx.doi.org/10.11648/j.ijmsa.20170604.11.

[15] Gschneidner KA Jr, Daane AH. Physical metallurgy. Handb Phys Chem Rare Earths 1988 ; 11 : 409–84, http://dx.doi.org/10.1016/S0168-1273(88)11010-6.

[16] Krishnamurthy N, Gupta CK. Extractive metallurgy of rare earths. CRC Press; 2015. ISBN : 978-1-4665-7638-4.

[17] Awadh B. Pandey: direct forging and rolling of L12 aluminum alloys for armor applications. US Patent US9127334B2; 2009.

[18] International ASM. Alloy phase diagram, vol 10. 10.1007/BF02881433; 1989.

[19] Okamoto H. Al–Sm (aluminium–samarium). J Phase Equilib diffus 2012;33(3) : 243, http://dx.doi.org/10.1007/s11669-012-0019-y.

[20] Nogita K, Yasuda H, Yoshiya M, McDonald SD, Uesugi K, Takeuchi A, et al. The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys. J Alloys Compd 2010 ; 489(2):415–20, http://dx.doi.org/10.1016/j.jallcom.2009.09.138.

[21] Okamoto H. Phase diagram updates. J Phase Equilib 1991 ; 12(4):499, http://dx.doi.org/10.1007/BF02645980.

[22] Okamoto H. Al–Er (aluminum–erbium). J Phase Equilib Diffus 2011 ; 32(3) : 261, http://dx.doi.org/10.1007/s11669-011-9877-y.

[23] Okamoto H. Al–La (aluminum–lanthanum). J Phase Equilib Diffus 2007 ; 28(6) : 581, http://dx.doi.org/10.1007/s11669-007.

[24] Okamoto H. Supplemental literature review of binary phase diagrams: Al–Bi, Al–Dy, Al–Gd, Al–Tb, C–Mn, Co–Ga, Cr–Hf, Cr–Na, Er–H, Er–Zr, H–Zr, and Ni–Pb. J Phase Equilib Diffus 2014 ; 35(3) : 343–54, http://dx.doi.org/10.1007/s11669-014-0300-3.

[25] Ho CR, Cantor B. Heterogeneous nucleation of solidification of Si in Al–Si and Al–Si–P alloys. Acta Metall Mater 1995 ; 43(8) : 3231–46, http://dx.doi.org/10.1016/0956-7151(94)00480-6.

[26] Ho CR, Cantor B. Heterogeneous nucleation of solidification of Si in Al–Si. Mater Sci Eng A 1993 ; 173(1-2) : 37–40, http://dx.doi.org/10.1016/0921-5093(93)90182-E.

[27] Cantor B. Impurity effects on heterogeneous nucleation. Mater Sci Eng A 1997 ; 226 : 151–6, http://dx.doi.org/10.1016/S0921-5093(96)10608-0.

[28] Zhang DL, Cantor B. Heterogeneous nucleation of solidification of Si by solid AI in hypoeutectic Al–Si alloy. Metall Trans A 1993 ; 24(5) : 1195–204, http://dx.doi.org/10.1007/BF02657251.

[29] Shankar S, Riddle YW, Makhlouf MM. Nucleation mechanism of the eutectic phases in aluminum–silicon hypoeutectic alloys. Acta Mater 2004 ; 52(15) : 4447–60, http://dx.doi.org/10.1016/j.actamat.2004.05.045.

[30] Cho YH, Lee HC, Oh KH, Dahle AK. Effect of strontium and phosphorus on eutectic Al–Si nucleation and formation of « -Al 5 FeSi in hypoeutectic Al–Si foundry alloys. Metall Mater Trans A 2008 ; 39(10) : 2435–48, http://dx.doi.org/10.1007/s11661-008-9580-8.

[31] Ludwig TH, Dæhlen ES, Schaffer PL, Arnberg L. The effect ofCa and P interaction on the Al–Si eutectic in a hypoeutectic Al–Si alloy. J Alloys Compd 2014 ; 586 : 180–90, http://dx.doi.org/10.1016/j.jallcom.2013.09.127.

[32] Campbell J, Tiryakio˘glu M. Review of effect of P and Sr on modification and porosity development in Al–Si alloys. Mater Sci Technol 2010 ; 263 : 262–8, http://dx.doi.org/10.1179/174328409X425227.

[33] Sigworth G, Campbell J, Jorstad J. The modification of Al–Sicasting alloys: important practical and theoretical aspects. Int J Metalcast 2009 ; 3(1) : 65–78, http://dx.doi.org/10.1007/BF03355442.

[34] Campbell J. Complete casting handbook: metal casting processes, metallurgy, techniques and design. 2nd ed. Butterworth-Heinemann; 2015. p. 245. ISBN : 978-0-444-63509-9.

[35] Lu SZ, Hellawell A. The mechanism of silicon modification in aluminium–silicon alloys: impurity induced twinning. Metall Trans A 1987 ; 18(10) : 1721–33, http://dx.doi.org/10.1007/BF02646204.

[36] Khan S, Elliott R. Quench modification of aluminium–silicon eutectic alloys. J Mater Sci 1996 ; 31(14) : 3731–7, http://dx.doi.org/10.1007/BF00352787.

[37] Di Giovanni MT, de Menezes JT, Cerri E, Castrodeza EM. Influence of microstructure and porosity on the fracture toughness of Al–Si–Mg alloy. J Mater Res Technol 2019, http://dx.doi.org/10.1016/j.jmrt.2019.11.055 [In press].

[38] Pacz A. Alloy. US Patent US1387900A ; 1921.

[39] Engstler M, Barrirero J, Ghafoor N, Odén M, Mücklich F. 3D microstructure characterization and analysis of Al–Si foundry alloys at different length scales. Microsc Microanal 2014 ; 20(S3) : 956–7, http://dx.doi.org/10.1017/S1431927614006503.

[40] McDonald SD, Nogita K, Dahle AK. Eutectic nucleation in Al–Si alloys. Acta Mater 2004 ; 52(14) : 427380, http://dx.doi.org/10.1016/j.actamat.2004.05.043.

[41] Tsumura Y. On the theory of modification of aluminium-silicon alloys. J Jpn Inst Met Mater 1957 ; 21(2) : 69–83, http://dx.doi.org/10.2320/jinstmet1952.21.2 69.

[42] Day MG, Hellawell A. The microstructure and crystallography of aluminium–silicon eutectic alloys. Proc R Soc Lond Ser A Math Phys Sci 1968 ; 305(1483) : 473–91, http://dx.doi.org/10.1098/rspa.1968.0128.

[43] Nogita K, Knuutine A, McDonald SD, Dahle AK. Mechanisms of eutectic solidification in Al–Si alloys modified with Ba, Ca, Y and Yb. J Light Met 2001;1(4) : 219–28, http://dx.doi.org/10.1016/S1471-5317(02)00005-6.

[44] McDonald SD. Eutectic solidification and porosity formation in unmodified and modified hypoeutectic aluminium-silicon alloys. University of Queensland; 2002. p. 171–3 [PhD thesis].

[45] Li JH, Zarif MZ, Albu M, McKay BJ, Hofer F, Schumacher P. Nucleation kinetics of entrained eutectic Si in Al–5Si alloys. Acta Mater 2014;72:80–98, http://dx.doi.org/10.1016/j.actamat.2014.03.030.

[46] Li JH, Albu M, Hofer F, Schumacher P. Solute adsorption and entrapment during eutectic Si growth in A–Si-based alloys.Acta Mater 2015;83:187–202, http://dx.doi.org/10.1016/j.actamat.2014.09.040.

[47] Lu L, Nogita K, Dahle AK. Combining Sr and Na additions in hypoeutectic Al–Si foundry alloys. Mater Sci Eng A 2005;399(1-2) : 244–53, http://dx.doi.org/10.1016/j.msea.2005.03.091.

[48] Cardinale AM, Macciò D, Saccone A. Phase equilibria of the Dy–Al–Si system at 500 ◦C. J Therm Anal Calorim 2012 ; 108(2):817–23, http://dx.doi.org/10.1007/s10973-012-2196-7.

[49] Cardinale AM, Parodi N. Tb–Al–Si systems. J Therm Anal Calorim 2019;138(3):2057–64, http://dx.doi.org/10.1007/s10973-019-08500-5.

[50] Gröbner J, Mirkovi´c D, Schmid-Fetzer R. Thermodynamic aspects of the constitution, grain refining, and solidification enthalpies of Al–Ce–Si alloys. Metall Mater Trans A 2004 ; 35(11) : 3349–62, http://dx.doi.org/10.1007/s11661-004-0172-y.

[51] Cardinale AM, Macciò D, Saccone A. Phase equilibria in the Sm–Al–Si system at 500 ◦C. J Therm Anal Calorim 2014;116(1):61–7,

http://dx.doi.org/10.1007/s10973-014-3722.-6.

[52] Cardinale AM, Parodi N. The Gd–Al–Si isothermal section at 500 ◦C. J Phase Equilib Diffus 2018;39(1):68–73, http://dx.doi.org/10.1007/s11669-017-0608-x.

[53] Cardinale AM, Parod N. R–Al–Si systems (R: Pr, Nd). J Therm Anal Calorim 2018;134(2):1327–35, http://dx.doi.org/10.1007/s10973-018-7536-9.

[54] Samarium and/or gadolinium-containing heat-resisting cast aluminum alloy and preparation method thereof. China CN104294109A; 2014.

[55] High-toughness cast aluminum-silicon alloy and preparation method and application thereof. China CN109338180B; 2018.

[56] Patent: Masumoto T.: High strength, heat-resistant aluminum-based alloys. US Patent 5053085A, 1993.

[57] Al–Si–Mg–Sm rare earth cast aluminum alloy and preparation method thereof. China CN102758108A; 2012.

[58] High-strength heat-proof aluminum alloy material containing beryllium and rare earth and producing method thereof. WIPO (PCT) WO2011035654A1; 2009.

[59] Abdelaziz MH, Samuel AM, Doty HW, Valtierra S, SamuelFH. Effect of additives on the microstructure and tensile properties of Al–Si alloys. J Mater Res Technol 2019;8(2):2255–68, http://dx.doi.org/10.1016/j.jmrt.2019.03.003.

[60] De Giovanni M, Kaduk JA, Srirangam P. Modification of Al–Si Alloys by Ce or Ce with Sr. JOM 2019;71(1):426–34, http://dx.doi.org/10.1007/s11837-018-3192-6.

[61] Tsai YC, Chou CY, Lee SL, Lin CK, Lin JC, Lim SW. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al–7Si–0.35 Mg) aluminum alloys. J Alloys Compd 2009;487(1-2):157–62, http://dx.doi.org/10.1016/j.jallcom.2009.07.183.

[62] Tsai YC, Chou CY, Jeng RR, Lee SL, Lin CK. Effect of rare earth elements addition on microstructures and mechanical properties of A356 alloy. Int J Cast Met Res 2011;24(2):83–7, http://dx.doi.org/10.1179/136404610X12816241546456.

[63] Tsai YC, Lee SL, Lin CK. Effect of trace Ce addition on the microstructures and mechanical properties of A356 (AL–7SI–0.35 Mg) aluminum alloys. J Chin Inst Eng 2011;345:609–16, http://dx.doi.org/10.1080/02533839.2011.577598.

[64] Vijayan V, Prabhu KN. The effect of simultaneous refinement and modification by cerium on microstructure and mechanical properties of Al–8% Si alloy. Int J Cast Met Res 2016;29(6):345–9, http://dx.doi.org/10.1080/13640461.2016.1144698.

[65] Niu G, Mao J, Wang J. Effect of Ce addition on fluidity of casting aluminum alloy A356. Metall Mater Trans A 2019;50(12):5935–44,

http://dx.doi.org/10.1007/s11661-019-05458-9.

[66] Zhu M, Jian Z, Yao L, Liu C, Yang G, Zhou Y. Effect of mischmetal modification treatment on the microstructure, tensile properties, and fracture behavior of Al–7.0% Si–0.3% Mg foundry aluminum alloys. J Mater Sci 2011;46(8):2685–94, http://dx.doi.org/10.1007/s10853-010-5135-7.

[67] Mahmoud MG, Elgallad EM, Ibrahim MF, Samuel FH. Effect of rare earth metals on porosity formation in A356 alloy. Int J Metalcast 2018;12(2):251–65, http://dx.doi.org/10.1007/s40962-017-0156-5.

[68] Qiu H, Yan H, Hu Z. Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7 Mg alloys. J Alloys Compd 2013;567:77–81, http://dx.doi.org/10.1016/j.jallcom.2013.03.050.

[69] Qiu H, Yan H, Hu Z. Modification of near-eutectic Al–Si alloys with rare earth element samarium. J Mater Res 2014;29(11):1270–7, http://dx.doi.org/10.1557/jmr.2014113.

[70] Mao F, Yan G, Xuan Z, Cao Z, Wang T. Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys. J Alloys Compd 2015;650:896–906, http://dx.doi.org/10.1016/j.jallcom.2015.06.266.

[71] Li JH, Wang XD, Ludwig TH, Tsunekawa Y, Arnberg L, Jiang JZ, et al. Modification of eutectic Si in Al–Si alloys with Eu addition. Acta Mater 2015;84:153–63, http://dx.doi.org/10.1016/j.actamat.2014.10.064.

[72] Li JH, Ludwig TH, Oberdorfer B, Schumacher P. Solidification behaviour of Al–Si based alloys with controlled additions of Eu and P. Int J Cast Met Res 2018;31(6):319–31, http://dx.doi.org/10.1080/13640461.2018.1480891.

[73] Shi Z, Wang Q, Shi Y, Zhao G, Zhang R. Microstructure and mechanical properties of Gd-modified A356 aluminum alloys. J Rare Earths 2015;33(9):1004–9, http://dx.doi.org/10.1016/S1002-0721(14)60518-4.

[74] Liu W, Xiao W, Xu C, Liu M, Ma C. Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al–Si cast alloy. Mater Sci Eng A 2017;693:93–100, http://dx.doi.org/10.1016/j.msea.2017.03.097.

[75] Wang Q, Shi Z, Li H, Lin Y, Li N, Zhao G, et al. Effects of holmium additions on microstructure and properties of A356 aluminum alloys. Metals 2018;8(10):849, http://dx.doi.org/10.3390/met8100849.

[76] Colombo M, Gariboldi E, Morri A. Er addition to Al–Si–Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties. J Alloys Compd 2017;708:1234–44, http://dx.doi.org/10.1016/j.jallcom.2017.03.076.

[77] Colombo M, Albu M, Gariboldi E, Hofer F. Microstructural changes induced by Er and Zr additions to A356 alloy investigated by thermal analyses and STEM observations. Mater Charact 2020;161:110117, http://dx.doi.org/10.1016/j.matchar.2020.110117.

[78] Hu X, Jiang F, Ai F, Yan H. Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy. J Alloys Compd 2012;538:21–7, http://dx.doi.org/10.1016/j.jallcom.2012.05.089.

[79] Al–Si–Mg–Er rare earth casting aluminium alloy. China CN101705397A; 2009.

[80] Pengfei X, Bo GAO, Zhuang Y, Kaihua L, Ganfeng TU. Effect of erbium on properties and microstructure of Al–Si eutectic alloy. J Rare Earths 2010;28(6):927–30, http://dx.doi.org/10.1016/S1002-0721(09)60222-2.

[81] Jia K, Yu WB, Yao JM, Zhang S, Wu H. Al–9.00% Si–0.25% Mg alloys modified by ytterbium. Rare Met 2017;36(2):95–100, http://dx.doi.org/10.1007/s12598-014-0378-0.

[82] Hu Z, Dong Z, Yin Z, Yan H, Tian J, Xie H. Solidification behavior, microstructure and silicon twinning of Al–10Si

alloys with ytterbium addition. J Rare Earths 2018;36(6):662–8, http://dx.doi.org/10.1016/j.jre.2017.12.007.

[83] Li JH, Suetsugu S, Tsunekawa Y, Schumacher P. Refinement of eutectic Si phase in Al–5Si alloys with Yb additions. Metall Mater Trans A 2013;44(2):669–81, http://dx.doi.org/10.1007/s11661-012-1410-3.

[84] Hegde S, Prabhu K. N. Modification of eutectic silicon in Al–Si alloys. J Mater Sci 2008;43(9):3009–27, http://dx.doi.org/10.1007/s10853-008-2505-5.

[85] Li L, Li D, Mao F, Feng J, Zhang Y, Kang Y. Effect of cooling rate on eutectic Si in Al–7.0 Si–0.3 Mg alloys modified by La additions. J Alloys Compd 2020;826:154206, http://dx.doi.org/10.1016/j.jallcom.2020.154206.

[86] Shabestari SG, Shahri F. Influence of modification, solidification conditions and heat treatment on themicrostructure and mechanical  properties of A356 aluminum alloy. J Mater Sci 2004;39(6):2023–32, http://dx.doi.org/10.1023/B:JMSC. 0000017764.20609.0d.

[87] Knuutinen A, Nogita K, McDonald SD, Dahle AK. Porosity formation in aluminium alloy A356 modified with Ba, Ca, Y and Yb. J Light Met 2001;1(4):241–9, http://dx.doi.org/10.1016/S1471-5317(02)00006-8.

[88] Zhang X, Wang Z, Zhou Z, Xu J. Influence of rare earth (Ce and La) addition on the performance of Al–3.0 wt% Mg alloy. J Wuhan Univ Technology Mater Sci Ed 2017;32(3):611–8, http://dx.doi.org/10.1007/s11595-017-1642-6.

[89] Mahmoud MG, Samuel AM, Doty HW, Samuel FH. Effect of the addition of La and Ce on the solidification behavior of Al–Cu and Al–Si–Cu cast alloys. Int J Metalcast 2020;14(1):191–206, http://dx.doi.org/10.1007/s40962-019-00351-y.

[90] Jing L, Pan Y, Lu T, Chai W. Refinement effect of two rare earth borides in an Al–7Si–4Cu alloy: a comparative study. Mater Charact 2018;145:664–70, http://dx.doi.org/10.1016/j.matchar.2018.09.031.

[91] Nogita K, McDonald SD, Dahle AK. Eutectic modification of Al–Si alloys with rare earth metals. Mater Trans 2004;45(2):323–6, http://dx.doi.org/10.2320/matertrans.45.323.

[92] Nogita K, Drennan J, Dahle AK. Evaluation of silicon twinning in hypo-eutectic Al–Si alloys. Mater Trans 2003;44(4):625–8, http://dx.doi.org/10.2320/matertrans.44.625.

[93] Mahmoud MG, Samuel AM, Doty HW, Samuel FH. Role of heat treatment on the tensile properties and fractography of Al–1.2 Si–2.4 Cu and Al–8.0 Si–2.4 Cu cast alloys modified with Ce, La and Sr addition. Int J Metalcast 2020;14(1):218–42, http://dx.doi.org/10.1007/s40962-019-00350-z.

[94] Mahmoud MG, Samuel AM, Doty HW, Samuel FH. Formation of rare earth intermetallics in Al–Cu Cast alloys. In: Light metal symposium held at the 149th annual meeting and exhibition. Proceedings of TMS: 2020, February 23–27. 2020. p. 241–6, http://dx.doi.org/10.1007/978-3-030-36408-3 34.

[95] Samuel AM, Doty HW, Valtierra S, Samuel FH. Intermetallic precipitation in rare earth-treated A413.1 alloy: a metallographic study. Int J Mater Res 2018;109(2):157–71, http://dx.doi.org/10.3139/146.111591.

[96] Samuel AM, Elgallad EM, Mahmoud MG, Doty HW, Valtierra S, Samuel FH. Rare earth metal-based intermetallics formation in Al– Cu–Mg and Al–Si–Cu–Mg alloys: a metallographic study. Adv Mater Sci Eng 2018, http://dx.doi.org/10.1155/2018/7607465.

[97] Mahmoud MG, Samuel AM, Doty HW, Valtierra S, Samuel FH. Effect of rare earth metals, Sr, and Ti addition on the microstructural characterization of A413. 1 alloy. Adv Mater Sci Eng 2017:12, http://dx.doi.org/10.1155/2017/4712946.

[98] Li B, Wang H, Jie J, Wei Z. Microstructure evolution and modification mechanism of the ytterbium modified Al–7.5% Si–0.45% Mg alloys. J Alloys Compd 2011;509(7):3387–92, http://dx.doi.org/10.1016/j.jallcom.2010.12.081.

[99] Sims ZC, Weiss D, Rios O, Henderson HB, Kesler MS, McCall SK, et al. The efficacy of replacing metallic cerium in aluminum–cerium alloys with LREE mischmetal. In: Light metal symposium held at the 149th annual meeting and exhibition. Proceedings of TMS: 2020, February 23–27. 2020. p. 216–21, http://dx.doi.org/10.1007/978-3-030-36408-3 30.

[100] Tash M, Khalifa W, El-Mahallawi I. Thermal analysis and microstructure of Al–12% Si–2.5% Cu–0.4% Mg cast alloy with Ce and/or La rare earth metals. In : Light metal symposium held at the 149th annual meeting and exhibition. Proceedings of TMS : 2020 February 23–27. 2020. p. 1056–62, http://dx.doi.org/10.1007/978-3-030-36408-3 144.

 

 

LOGO_HautdePage